CS-111: Written Assignment 2

Submission instructions:

Submit your answers to the following questions in a single pdf file on Canvas \& Gradescope. Your work is due by 11:59 p.m. on Wednesday, the 22nd of May.

Questions:

1) Suppose that a 3-bit image has the intensity distribution shown in the Table-1, where intensity levels are integers in the range [0,7]. What is the new intensity distribution after applying histogram equalization/stretching? Your answer should include all necessary calculations and a new intensity table like Table-1. [10]

Intensity level $\boldsymbol{r}_{\boldsymbol{k}}$	Pixel number $\boldsymbol{n}_{\boldsymbol{k}}$
$\boldsymbol{r}_{\mathbf{0}}=\mathbf{0}$	$\boldsymbol{n}_{\mathbf{0}}=\mathbf{8 0 0}$
$\boldsymbol{r}_{\mathbf{1}}=1$	$\boldsymbol{n}_{1}=\mathbf{1 0 3 3}$
$\boldsymbol{r}_{2}=2$	$\boldsymbol{n}_{2}=\mathbf{8 5 0}$
$\boldsymbol{r}_{3}=3$	$n_{3}=\mathbf{6 4 8}$
$\boldsymbol{r}_{4}=4$	$n_{4}=337$
$\boldsymbol{r}_{5}=5$	$\boldsymbol{n}_{5}=245$
$\boldsymbol{r}_{6}=6$	$n_{6}=122$
$\boldsymbol{r}_{7}=7$	$n_{7}=81$

Table-1. Intensity distribution of 3-bit image.
2) An image has a probability density function (PDF) of $p(r)=2(1-r)$. We want to transform this image so that its PDF becomes $p(z)=2 z$. Assume continuous images and find the transformation (in terms of r and z) that would achieve this goal. [10]
3) When we mix blue paint with yellow paint, we get green. But when we project blue light on yellow light, we get brown. How do you explain this contradiction? [5]
4) Consider a linear display whose red, green and blue primaries have chromaticity coordinates of $(0.5,0.4),(0.2,0.5)$ and ($0.1,0.1$) respectively. The maximum intensity (defined by $X+Y+Z$) of white is $1000 \mathrm{~cd} / \mathrm{m}^{2}$ respectively. The white point of the display is ($0.33,0.37$). What is the XYZ coordinates of the color generated by the RGB input ($0.5,0.75,0.2$) on this device? [10]
5) C_{1} and C_{2} are colors with chromaticity coordinates ($0.33,0.45$) and $(0.82,0.10)$ respectively. In what proportions should these colors be mixed to generate
a color C_{3} of chromaticity coordinates ($0.55,0.28$)? If the brightness of C_{3} is 90 , what are the brightness of C_{1} and C_{2} ? [10]
6) Consider four neighboring pixels of I denoted by $a=I(x, y), b=I(x, y+1), c=I(x+1, y)$ and $d=I(x+1, y+1)$. Let us consider a point in the image at location $(x+0.2, y+0.8)$. We would like to compute the value of I at P using bilinear interpolation. [5+3=8]
a) Write out the equation for this value in terms of a, b, c, and d.
b) What is the degree of this equation?
7) The spectrum of color $C_{1}=\left(X_{1}, Y_{1}, Z_{1}\right)$ and $C_{2}=\left(X_{2}, Y_{2}, Z_{2}\right)$ are given by $s_{1}(\lambda)$ and $s_{2}(\lambda)$ respectively. Let the color formed by multiplications of the spectrums s_{1} and s_{2} be s_{3}, i.e. $s_{3}(\lambda)=s_{1}(\lambda) * s_{2}(\lambda)$. Is it true that the XYZ coordinate corresponding to s_{3}, denoted by C_{3}, is ($X_{1} X_{2}, Y_{1} Y_{2}, Z_{1} Z_{2}$) ? Justify your answer with calculations. [5]
8) Consider two spectra, $s_{1}(\lambda)$ and $s_{2}(\lambda)$, that are metamers for viewer A. However, these two spectra are not a metamer for another viewer B. Why does this situation happen? [3]
9) Consider the color $C=(0.2,0.4)$ in the chromaticity chart. Find its hue and saturation. Provide the chromaticity coordinate of a color B which when mixed with C will produce white. Find the hue of $B .[2+\mathbf{3 + 3 + 2 = 1 0}]$
10) Answer the following questions about 2 D geometric transformations: $[2+2+2+3=9]$
a. What transformation does the following matrix represent?

$$
\left[\begin{array}{cc}
\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}
\end{array}\right]
$$

b. Provide a matrix transformation which is the inverse of the transformation in part-(a).
c. What is the 2D transformation matrix that will reduce an image to half its size?
d. Provide a single 2D transformation matrix that will reduce an image to half its size, then rotates it by 30 degrees anticlockwise.

