CS-111: Written Assignment 2

Submission instructions:

Submit your answers to the following questions in a single pdf file on Canvas & Gradescope. Your work is due by 11:59 p.m. on Wednesday, the 22nd of May.

Questions:

1) Suppose that a 3-bit image has the intensity distribution shown in the Table-1, where intensity levels are integers in the range [0,7]. What is the new intensity distribution after applying histogram equalization/stretching? Your answer should include all necessary calculations and a new intensity table like Table-1. [10]

Intensity level r _k	Pixel number n_k
$r_{0} = 0$	$n_0 = 800$
$r_1 = 1$	$n_1 = 1033$
$r_2 = 2$	$n_2 = 850$
$r_3 = 3$	$n_3 = 648$
$r_4 = 4$	$n_4 = 337$
$r_{5} = 5$	$n_{5} = 245$
<i>r</i> ₆ = 6	$n_6 = 122$
$r_7 = 7$	$n_7 = 81$

Table-1. Intensity distribution of 3-bit image.

- 2) An image has a probability density function (PDF) of p(r) = 2(1-r). We want to transform this image so that its PDF becomes p(z) = 2z. Assume continuous images and find the transformation (in terms of r and z) that would achieve this goal. **[10]**
- 3) When we mix blue paint with yellow paint, we get green. But when we project blue light on yellow light, we get brown. How do you explain this contradiction? **[5]**
- 4) Consider a linear display whose red, green and blue primaries have chromaticity coordinates of (0.5, 0.4), (0.2, 0.5) and (0.1, 0.1) respectively. The maximum intensity (defined by X+Y+Z) of white is 1000 cd/m^2 respectively. The white point of the display is (0.33, 0.37). What is the XYZ coordinates of the color generated by the RGB input (0.5, 0.75, 0.2) on this device? **[10]**
- 5) C_1 and C_2 are colors with chromaticity coordinates (0.33, 0.45) and (0.82, 0.10) respectively. In what proportions should these colors be mixed to generate

a color C_3 of chromaticity coordinates (0.55, 0.28)? If the brightness of C_3 is 90, what are the brightness of C_1 and C_2 ? **[10]**

- 6) Consider four neighboring pixels of *I* denoted by a = I(x, y), b = I(x, y + 1), c = I(x + 1, y)and d = I(x + 1, y + 1). Let us consider a point in the image at location (x + 0.2, y + 0.8). We would like to compute the value of *I* at *P* using bilinear interpolation. **[5+3=8]**
 - a) Write out the equation for this value in terms of *a*, *b*, *c*, and *d*.
 - b) What is the degree of this equation?
- 7) The spectrum of color $C_1 = (X_1, Y_1, Z_1)$ and $C_2 = (X_2, Y_2, Z_2)$ are given by $s_1(\lambda)$ and $s_2(\lambda)$ respectively. Let the color formed by multiplications of the spectrums s_1 and s_2 be s_3 , i.e. $s_3(\lambda) = s_1(\lambda) * s_2(\lambda)$. Is it true that the XYZ coordinate corresponding to s_3 , denoted by C_3 , is (X_1X_2, Y_1Y_2, Z_1Z_2) ? Justify your answer with calculations. **[5]**
- 8) Consider two spectra, $s_1(\lambda)$ and $s_2(\lambda)$, that are metamers for viewer A. However, these two spectra are not a metamer for another viewer B. Why does this situation happen? [3]
- 9) Consider the color C = (0.2, 0.4) in the chromaticity chart. Find its hue and saturation. Provide the chromaticity coordinate of a color B which when mixed with C will produce white. Find the hue of B. [2+3+3+2=10]
- 10) Answer the following questions about 2D geometric transformations: [2+2+2+3=9]
 - a. What transformation does the following matrix represent?

- b. Provide a matrix transformation which is the inverse of the transformation in part-(a).
- c. What is the 2D transformation matrix that will reduce an image to half its size?
- d. Provide a single 2D transformation matrix that will reduce an image to half its size, then rotates it by 30 degrees anticlockwise.